Liposomes are microscopic spheres made from the same material as the cell membranes in the human body. They have attracted a lot of attention due to their amazing properties. They can be used to carry drugs, nutrients and other agents to specific destinations in the body. There are various different preparation methods and techniques for liposome manufacturing and those used depend on on various factors.
Phospholipids like lecithin is used as raw material. The phospholipid molecules have heads that love water. They also have two tails that are essential fatty acid chains repelled by water. When the phospholipids are put in a solution that is water-based, the heads end up side by side with the tails trailing behind. The fact that the tails repel water means that another layer lines up with the tails facing the tails of the first layer. This natural alignment results in two rows of tightly fitting molecules. These layers form membranes around and inside all cells.
Liposomes are used to deliver toxic drugs to target cancer cells. They are used for delivering nutrients deficient in the body or cosmetic nutrients to the skin. Many other medical applications are possible too such as in the field of genetics. Preparation methods depend on various factors such as the characteristics of the material to be carried, the consistency offered from batch to batch and scale of production.
Various lipids and mixtures can be used to make liposomes and some of these are of a higher quality than others. What they have in common is they do not go through the digestive tract and the encapsulated payload is not biologically active until it reaches the cells. It is how, when, where and why the rupture of the membrane occurs that the difference between them comes in.
Liposomes are usually synthesized by mixing and dissolving phospholipids in organic solvent. A clear lipid film is formed by removing the solvent. Hydration of this film eventually leads to formation of large vesicles which have several layers, much like the structure of an onion. Each bilayer is separated from the other by water. A form of energy is required to reduce their size. Sonication, agitation by sound waves, is one method used and extrusion is another.
Different methods are known to have certain weaknesses and strengths. Some allow for high load dosing and others offer much lower dose loading. Some of them offer more consistency and stability. The encapsulated content is affected more by some methods than others.
The type of manufacturing processes and equipment used both have an effect on the type of liposomes produced. Inconsistent sizes, high production costs and structural instability are just some of the challenges faced in production. Many advances are being made in this respect as research proceeds at a rapid pace. An exciting example is research into how to make liposomes that can target certain organs or diseased tissue.
One of the greatest benefits of liposomes is there flexibility. They can be adapted in many different ways to suit different applications. Size, surface charge and lipid content can all be varied according to the techniques used. Conventional methods are effective but much experimentation is still being done. The future holds many new possibilities with the exciting developments taking place in this field.
Phospholipids like lecithin is used as raw material. The phospholipid molecules have heads that love water. They also have two tails that are essential fatty acid chains repelled by water. When the phospholipids are put in a solution that is water-based, the heads end up side by side with the tails trailing behind. The fact that the tails repel water means that another layer lines up with the tails facing the tails of the first layer. This natural alignment results in two rows of tightly fitting molecules. These layers form membranes around and inside all cells.
Liposomes are used to deliver toxic drugs to target cancer cells. They are used for delivering nutrients deficient in the body or cosmetic nutrients to the skin. Many other medical applications are possible too such as in the field of genetics. Preparation methods depend on various factors such as the characteristics of the material to be carried, the consistency offered from batch to batch and scale of production.
Various lipids and mixtures can be used to make liposomes and some of these are of a higher quality than others. What they have in common is they do not go through the digestive tract and the encapsulated payload is not biologically active until it reaches the cells. It is how, when, where and why the rupture of the membrane occurs that the difference between them comes in.
Liposomes are usually synthesized by mixing and dissolving phospholipids in organic solvent. A clear lipid film is formed by removing the solvent. Hydration of this film eventually leads to formation of large vesicles which have several layers, much like the structure of an onion. Each bilayer is separated from the other by water. A form of energy is required to reduce their size. Sonication, agitation by sound waves, is one method used and extrusion is another.
Different methods are known to have certain weaknesses and strengths. Some allow for high load dosing and others offer much lower dose loading. Some of them offer more consistency and stability. The encapsulated content is affected more by some methods than others.
The type of manufacturing processes and equipment used both have an effect on the type of liposomes produced. Inconsistent sizes, high production costs and structural instability are just some of the challenges faced in production. Many advances are being made in this respect as research proceeds at a rapid pace. An exciting example is research into how to make liposomes that can target certain organs or diseased tissue.
One of the greatest benefits of liposomes is there flexibility. They can be adapted in many different ways to suit different applications. Size, surface charge and lipid content can all be varied according to the techniques used. Conventional methods are effective but much experimentation is still being done. The future holds many new possibilities with the exciting developments taking place in this field.
About the Author:
When you are looking for information about liposome manufacturing, you can pay a visit to the web pages online here today. Details are available at http://purensm.com now.
No comments:
Post a Comment